Размер шрифта: A A A     Цветовая схема: A A A     Обычная версия     Настройки

НАСТРОЙКИ ШРИФТА:

Выберите шрифт: ✓  Без засечек ✓  С засечеками

Интервал между буквами (кернинг): ✓  Стандартный ✓  Средний ✓  Большой

ВЫБОР ЦВЕТОВОЙ СХЕМЫ:

✓  Черным по белому ✓  Белым по черному ✓  Темно-синим по голубому


Вернуть стандартные настройки Закрыть панель

Федеральное агентство
воздушного транспорта

(Росавиация)

Сегодня: 16 октября 2025 года
О РосавиацииДокументыДеятельностьСертификацияУчет БВС и СВСОбращения гражданКонтактыПресс-служба
ГлавнаяПресс-службаНовости России  

Разработка необходимых в ядерной отрасли упрочняющих покрытий ускорилась

29 мая 2024 00:30

Оборудование, которое позволяет в разы снизить сроки разработки износостойких и жаростойких покрытий, необходимых для работы в экстремальных условиях, в том числе в космической и ядерной отраслях, создали физики из Томска и Новосибирска. Пресс-служба Института ядерной физики имени Г. И. Будкера СО РАН (ИЯФ СО РАН) сообщила об этом.

"Порой, чтобы получить требуемый комплекс свойств на поверхности конструкционных материалов, предназначенных в том числе для работы в экстремальных условиях, необходимо несколько месяцев и даже лет. Специалисты Института сильноточной электроники СО РАН (ИСЭ СО РАН) совместно с коллегами из ИЯФ СО РАН создали вакуумно-электронно-ионно-плазменный стенд (ВЭИПС), который позволит в разы снизить срок подобных работ", - отмечено в сообщении. 

В прошлом подбор параметров для получения нужных свойств занимал месяцы и годы, как подчеркнули в пресс-службе, теперь узнать всю необходимую информацию о процессе можно значительно быстрее - всего за несколько дней.

Особенностью совместного проекта стало использование синхротронного излучения (СИ), уточняют в пресс-службе. На канал СИ устанавливают стенд, и специалисты могут наблюдать, как происходит эволюция фазового состава, параметров структуры упрочняющих, антикоррозионных и жаростойких покрытий в ходе их нанесения на материал. Одна из проблем при создании таких покрытий ранее, заключалась в том, что процесс отработки технологии нанесения зачастую шел "вслепую", считают в ИЯФ СО РАН.

Поверхностная инженерия является одним из перспективных направлений в области материаловедения, которое  направлено на улучшение физико-механических свойств и эксплуатационных характеристик материалов. Она включает множество методов модификации поверхности, в том числе пучково-плазменные. Чтобы произошло осаждение упрочняющих и жаростойких пленок или формирование новых соединений на поверхности материала, воздействуют на нее потоками ионов, плазмы, пучками электронов, лазерным излучением и другим. 

К примеру, одна из деталей газотурбинных двигателей самолетов - лопатка турбины, которых может насчитываться в двигателе несколько сотен, - постоянно работает при температуре выше 1000 градусов. На ее поверхности, соотвественно, нужно создавать специальные покрытия. А также на материалах, используемых в космической, атомной, ядерной отраслях, поскольку они постоянно испытывают воздействие критических температур, химического воздействия, ионизирующего излучения и других экстремальных факторов.


 

Наверх